Por: Soraya Carvajal B
Si usted realiza compras en las grandes plataformas electrónicas que rastrean sus adquisiciones previas y le sugieren opciones nuevas acorde con sus “preferencias”; si utiliza asistentes de voz desde su móvil para hacer consultas, convertir voz a texto o ejecutar instrucciones; si realiza traducciones en línea, en tiempo real; si utiliza filtros en su correo electrónico; si es usuario de programas de reconocimiento facial; si es asiduo a los videojuegos o si utiliza Google o motores de búsqueda similares, sepa entonces que usted está en contacto cada día con la Inteligencia Artificial (IA). La IA es una realidad cotidiana, está presente en múltiples aspectos de nuestras vidas y no, no es ciencia ficción.
La Inteligencia artificial (IA o Artificial Intelligence, en inglés) es el campo de las ciencias de la computación que se centra en la creación de programas y mecanismos que pueden mostrar comportamientos considerados inteligentes. Así, la IA es la simulación de procesos de inteligencia humana por parte de máquinas, especialmente sistemas informáticos. Estos procesos incluyen el aprendizaje (la adquisición de información y reglas para el uso de la información), el razonamiento (para llegar a conclusiones aproximadas o definitivas) y la autocorrección.
La IA nace en una reunión celebrada en 1956 en Dartmouth (Estados Unidos) en la que participó un grupo de científicos que serían los principales investigadores del área. En este evento J. McCarthy, M. Minsky, N. Rochester y C. E. Shannon redactaron una propuesta en la que aparece por primera vez el término «inteligencia artificial», cuya definición se adjudica a John McCarthy.
Principales temas de la IA
Aunque existen diferentes definiciones acerca de la IA, esta rama de la computación viene trabajando fuertemente en diferentes temas, entre los que destacan:
La planificación automática (Automated Planning)
La planificación es el procedimiento automático diseñado para encontrar un plan que resuelva un problema concreto. Esta disciplina de la IA aborda el diseño de un curso de acción que tendrá por misión satisfacer cierto objetivo, generalmente a través de la ejecución de un robot u otros agentes artificiales capaces de actuar en un entorno.
Representación del conocimiento
La representación del conocimiento y el razonamiento es un área de la inteligencia artificial que tiene como objetivo fundamental representar el conocimiento de una manera que facilite la inferencia. Es decir, sacar conclusiones a partir de dicho conocimiento para poder resolver los problemas. Sus aplicaciones en la medicina, por ejemplo, ayudan a elaborar diagnósticos.
Aprendizaje automático (Machine Learning)
Es una rama de la inteligencia artificial, que permite programar sistemas para tomar decisiones automáticas a partir de grandes cantidades de datos, entrenándolos con miles de ejemplos para identificar patrones y que puedan actuar de forma anticipada posteriormente. Su objetivo es desarrollar técnicas que permitan que las máquinas aprendan, incluso sin ser programadas de manera explícita, dado que los programas informáticos pueden aprender y cambiar cuando se exponen a nuevos datos y/o de sus mismos errores.
Entre los ejemplos de aplicación del aprendizaje automático están: los motores de búsqueda, los programas de detección de fraude en el uso de las tarjetas de crédito, análisis del mercado de valores, la clasificación de secuencias del ADN, la detección de contenidos inadecuados en redes sociales como Twitter, Facebook o Instagram usando algoritmos, la personalización del feed de noticias para cada usuario por parte de Facebook, o la recomendación de nuevos productos y películas por parte de Amazon y Netflix.
Procesamiento del Lenguaje Natural, PLN (Natural Language Processing)
Es un campo de las ciencias que integra la computación, la inteligencia artificial y la lingüística y estudia interacciones entre las máquinas y el lenguaje humano. Como rama de conocimiento de la Inteligencia Artificial se centra en conseguir que una máquina comprenda lo que una persona expresa mediante el uso de su lengua natural de expresión (su idioma).
El PLN busca diseñar mecanismos para comunicarse que sean eficaces computacionalmente, es decir, que se puedan realizar por medio de programas que ejecuten o simulen la comunicación. De esta manera, los modelos que se están aplicando se centran no solo en la comprensión del lenguaje en sí, sino en aspectos generales cognitivos de los humanos, así como en la organización de su memoria. Aunque las lenguas se expresan en forma oral, escrita o mediante símbolos, El PLN está más avanzado en el tratamiento de textos escritos.
Aprendizaje profundo (Deep learning)
Es una rama de investigación de la inteligencia artificial que imita el trabajo del cerebro humano a la hora de procesar datos y crear patrones. El Deep Learning representa un mayor acercamiento a la arquitectura y al modo de funcionamiento del sistema nervioso humano, con el añadido de que las máquinas aprenden a mayor velocidad y pueden analizar y procesar enormes cantidades de datos, detectando incluso características ocultas en los mismos.
Robótica
Área de la ingeniería que se centra en el diseño y fabricación de máquinas automáticas programables (robots) con el fin de realizar tareas repetitivas (como ensamblaje de aparatos, automóviles, etc.), pero también se están desarrollando robots aptos para tareas complejas y de alta especialización, con mayor autonomía y capacidad para tomar decisiones. Hoy los robots están presentes en numerosos y diversos sectores como la industria, logística, salud, exploración espacial, sector militar, entre otros y también se está utilizando el aprendizaje automático para construir robots que interactúen en entornos sociales.
Visión artificial
Hace referencia a los métodos usados para capturar, procesar y analizar imágenes del mundo real, patrones, señales, caracteres, objetos, escenas, etc., con la finalidad de producir información que pueda ser entendida por una máquina.